Diastereo- and Enantioselective Synthesis of (*E*)-2-Methyl-1,2-*syn*- and (*E*)-2-Methyl-1,2-*anti*-3-pentenediols via Allenylboronate Kinetic Resolution with $(^{d}$ Ipc)₂BH and Aldehyde Allylboration

2012 Vol. 14, No. 12 3028–3031

ORGANIC LETTERS

Jeng-Liang Han, Ming Chen, and William R. Roush*

Department of Chemistry, Scripps Florida, Jupiter, Florida 33458, United States

roush@scripps.edu

Received April 24, 2012

Enantioselective hydroboration of racemic allenylboronate (\pm)-1 with 0.48 equiv of (^{*d*}lpc)₂BH at -25 °C proceeds with efficient kinetic resolution and provides allylborane (*R*)-*Z*-4. When heated to 95 °C, allylborane (*R*)-*Z*-4 isomerizes to the thermodynamically more stable allylborane isomer (*S*)-*E*-7. Subsequent allylboration of aldehydes with (*R*)-*Z*-4 or (*S*)-*E*-7 at -78 °C followed by oxidative workup provides 1,2-*syn*- or 1,2-*anti*-diols, 2 or 3, respectively, in 87–94% ee.

Asymmetric synthesis of chiral, nonracemic molecules is a major objective of current research in organic chemistry.¹ Because it is generally easier and more cost-effective to synthesize racemic compounds rather than to perform an enantioselective synthesis, resolution of racemates remains a valuable tool to access highly enantiomerically enriched compounds, especially for the synthesis of ligands or reagents needed for enantioselective synthetic methods. Among many available resolution strategies, kinetic resolution of a racemic starting material is a well-established approach.² By taking advantage of the different rates of reaction of each enantiomer of a racemate with a chiral, nonracemic reagent or catalyst, kinetic resolution enables partial or complete separation of the racemate and allows access to a variety of highly enantiomerically enriched molecules. As part of ongoing studies to expand the scope of the double allylboration chemistry developed in our laboratory,³ we describe here the diastereo- and enantioselective synthesis of (*E*)-2-methyl-1,2-*syn*- and (*E*)-2methyl-1,2-*anti*-3-pentenediols via the efficient kinetic resolution of racemic allenylboronate (\pm) -1⁴ with (^dIpc)₂BH.

^{(1) (}a) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. *Comprehensive Asymmetric Catalysis I-III*; Springer: Berlin, 1999. (b) Ojima, I. *Catalytic Asymmetric Synthesis*, 2nd ed.; Wiley/VCH: New York, 2000.

⁽²⁾ For selected reviews on kinetic resolution: (a) Kagan, H. B.; Fiaud, J. C. In *Topics in Stereochemistry*; Allinger, A. L., Eliel, E., Eds.; Wiley: New York, 1988; Vol. 18, p 249. (b) Vedejs, E.; Jure, M. *Angew. Chem., Int. Ed.* **2005**, *44*, 3974.

^{(3) (}a) Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 13644. (b) Kister, J.; DeBaillie, A. C.; Lira, R.; Roush, W. R. J. Am. Chem. Soc. 2009, 131, 14174. (c) Kister, J.; Nuhant, P.; Lira, R.; Sorg, A.; Roush, W. R. Org. Lett. 2011, 13, 1868. (d) Nuhant, P.; Kister, J.; Lira, R.; Sorg, A.; Roush, W. R. Tetrahedron 2011, 67, 6497. Corrigendum: Tetrahedron 2012, 68, 774.

⁽⁴⁾ Allenylboronates (\pm)-1, (*P*)-1, and (*M*)-1 were prepared according to the procedure reported by Sawamura and co-workers: (a) Ito, H.; Sasaki, Y.; Sawamura, M. *J. Am. Chem. Soc.* **2008**, *130*, 15774. (b) Chen, M.; Roush, W. R. Manuscript submitted.

The enantioselective hydroboration of allenes has received remarkably little attention until recently.^{5,6} Caserio and Moore documented low levels of enantioselectivity in attempts to accomplish the kinetic resolution of 2,3pentadiene via hydroboration with diisopinocampheylborane [(Ipc)₂BH].⁵ More recently, we demonstrated the remarkable, highly enantioselective and enantioconvergent hydroboration of racemic 1-stannyl-1,2-butadiene by using (^dIpc)₂BH.⁶ The latter study prompted us to explore more broadly the enantioselective hydroboration of racemic allenes.

In an initial experiment (Scheme 1a), the enantiomerically enriched allenylboronate (M)-1⁴ (1 equiv, 95% ee) was treated with (^dIpc)₂BH (1 equiv) at -25 °C followed by addition of hydrocinnamaldehyde at -78 °C and subsequent oxidative workup. This reaction provided the 1,2-

Scheme 1. Initial Hydroboration-Allylboration Studies

syn-diol **2a** in 88% yield with > 20:1 diastereoselectivity and >95% ee. In contrast, when (*M*)-**1** was treated with $(^{1}\text{Ipc})_{2}\text{BH}$ (1 equiv) at -25 °C under otherwise identical conditions, a 1:1 mixture of 1,2-syn-diol **2a** (49% ee) and 1,2-anti-diol **3a** (81% ee) was obtained in 12% combined yield (Scheme 1b).

It is apparent from the data in Scheme 1 that the hydroboration of enantioenriched allene (M)-1 with $({}^{d}Ipc)_{2}BH$ is most probably a matched double asymmetric reaction, while the hydroboration of (M)-1 with $({}^{l}Ipc)_{2}BH$ is likely a mismatched case.⁷ It is also apparent that the rates of the hydroboration reactions of allenylboronate (M)-1 with $({}^{d}Ipc)_{2}BH$ and $({}^{l}Ipc)_{2}BH$ are quite different. These data suggested that it might be possible to effect the enantioselective hydroboration of racemic allenylboronate (\pm) -1 in a kinetic resolution manifold to access enantioenriched 1.2-syn-diols 2. Gratifyingly, treatment of allene (\pm) -1 (2.1 equiv) with $({}^{d}Ipc)_{2}BH$ (1 equiv) at $-25 \degree C$ for 5 h followed by the addition of hydrocinnamaldehyde (0.8 equiv) at -78 °C provided the 1,2-syn-diol 2a in 75% yield with > 20:1 diastereoselectivity and 90% ee after oxidation (entry 1, Table 1). Compared to the results in Scheme 1a, the erosion of the enantioselectivity (90% vs >95% ee) is likely due to involvement of minor amounts of allylboranes deriving from the mismatched hydroboration of allene (P)-1 with $(^{d}Ipc)_{2}BH$. The conditions developed for the synthesis of 2a were then applied to a variety of aldehydes; 1,2-syn-diols 2b-e were obtained in 63-75% vield with $\geq 10:1$ diastereoselectivity and 90–94% ee (entries 3-6, Table 1). The absolute stereochemistry of the secondary hydroxyl groups of 2a - e was assigned by using the modified Mosher ester analysis.⁸ The syn stereochemistry of **2a** was assigned by the ¹H NOE studies of a derived acetonide derivative (see Supporting Information (SI)).

Table 1. Synthesis of 2-Methyl-1,2-*syn*-diols **2** via Kinetically Controlled Hydroboration of (\pm) -**1**^{*a*}

$ \begin{array}{c} \begin{array}{c} & \overset{\text{Me}}{\underset{O-B}{\overset{O}{}}} & \overset{\text{i.}}{\underset{H}{\overset{(d pc)_2BH}{}} (1 \text{ equiv})} \\ & \overset{\text{outure, }}{\underset{H}{}} & \overset{\text{outure, }}{\underset{H}{} & \overset{\text{outure, }}{\underset{H}{}} & \overset{\text{outure, }}{\underset{H}{} & \overset{\text{outure, }}{\underset{H}{\overset{&}} & \overset{&}}{\underset{H}{\overset{&}} & \overset{&}}{\underset{H}{&$						
entry	RCHO	product	yield	ds	$\% ee^b$	
1	Ph(CH ₂) ₂ CHO	2a	75%	>20:1	90	
2	$Ph(CH_2)_2CHO^c$	$ent-\mathbf{2a}$	82%	>20:1	90	
3	$BnO(CH_2)_2CHO$	2b	72%	>20:1	90	
4	PhCHO	2c	63%	>20:1	93	
5	CyCHO	2d	73%	>20:1	94	
6	PhCH=CHCHO	2e	74%	10:1	92	

^{*a*} Reactions were performed by treating (±)-1 (0.87 mmol, 2.1 equiv) with (^{*d*}Ipc)₂BH (1.0 equiv) in toluene at -25 °C for 5 h, followed by addition of RCHO (0.8 equiv) at -78 °C. The mixture was then allowed to stir at -78 °C for 4 h. The reactions were subjected to a standard workup (NaOH, H₂O₂) at 0 °C prior to product isolation. ^{*b*} Determined by Mosher ester analysis. ^{8 *c*} (^{*l*}Ipc)₂BH was used.

Consistent with our previous studies of allene hydroboration,^{6,11} the results in Table 1 suggest that hydroboration of allenylboronate (*M*)-1 with (^{*d*}Ipc)₂BH at -25 °C proceeds via **TS-1** to produce the γ -boryl-(*Z*)-allylborane (*R*)-*Z*-4 (Scheme 2). Allylboration of aldehydes with (*R*)-*Z*-4 at -78 °C then provides boronate intermediate **5** via the chairlike transition state **TS-2**.⁹ Compared to dialkylallylborane (*R*)-*Z*-4, the remaining allenylboronate (*P*)-1

^{(5) (}a) Waters, W. L.; Caserio, M. C. *Tetrahedron Lett.* 1968, 5233.
(b) Moore, W. R.; Anderson, H. W.; Clark, S. D. J. Am. Chem. Soc. 1973, 95, 835.

^{(6) (}a) Chen, M.; Roush, W. R. J. Am. Chem. Soc. 2011, 133, 5744. For recent synthetic applications see: (b) Sun, H.; Abbott, J. R.; Roush, W. R. Org. Lett. 2011, 13, 2734. (c) Yin, M.; Roush, W. R. Tetrahedron 2011, 67, 10274. (d) Chen, M.; Roush, W. R. Org. Lett. 2012, 14, 426. (e) Chen, M.; Roush, W. R. Org. Lett. 2012, 14, 1880.

⁽⁷⁾ Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1.

^{(8) (}a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
(b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.

^{(9) (}a) Roush, W. R. In Comprehensive Organic Synthesis; Trost, B. M., Ed. Pergamon Press: Oxford, 1991; Vol. 2, p 1. (b) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207. (c) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; p 299. (d) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763. (e) Lachance, H.; Hall, D. G. Org. React. 2008, 73, 1. (f) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.

and boronate intermediate **5** are much less reactive toward aldehyde addition. Therefore, products deriving from reactions of these intermediates with aldehydes were not observed. Subsequent oxidation of **5** under standard conditions gives the isolated 1,2-*syn*-diols **2**.

Scheme 2. Proposed Kinetic Hydroboration of (M)-1 and Allylboration of (R)-Z-4 with Aldehydes

It has been demonstrated^{11a} that the kinetically generated γ -boryl-(Z)-allylboranes isomerize to the thermodynamically more stable γ -boryl-(E)-allylboranes via reversible 1,3-boratropic shifts.^{10,11} Accordingly, we anticipated that allylborane (S)-E-7 could be obtained from (R)-Z-4 under thermodynamically controlled isomerization conditions, which would permit access to 1,2-antidiols 3. Indeed, when the hydroboration of allenylboronate (\pm)-1 with (^dIpc)₂BH was performed at -25 °C for 5 h followed by heating the solution of (R)-Z-4 at 95 °C for 1.5 h and treatment of the resulting allylborane with hydrocinnamaldehyde at -78 °C, a 1:7 mixture of 1,2-syn-diol 2a and 1,2-anti-diol 3a (87% ee) was obtained in 89% combined vield after oxidative workup. Similar results were obtained when the isomerization was carried out at higher temperatures. The hydroboration-isomerizationallylboration reaction sequence was applied to a variety of aldehydes (Table 2); 1,2-anti-diols **3b**-**f** were obtained in 52-87% yield with synthetically useful diastereoselectivity $(ds \ge 6:1)$ and 87-92% ee. The absolute stereochemistry of the secondary hydroxyl group of 3a-f was assigned by using the modified Mosher ester analysis.⁸ The anti stereochemistry of 3a was assigned by ¹H NOE studies of the derived acetonide derivative (see SI).

As illustrated in Scheme 3, we postulate that kinetic hydroboration of allenylboronate (M)-1 with $({}^{d}\text{Ipc})_{2}BH$ at $-25 \text{ }^{\circ}\text{C}$ initially generates allylborane (R)-Z-4, which

Table 2. Synthesis of 2-Methyl-1,2-*anti*-diols **3** via Thermodynamically Controlled Hydroboration of (\pm) -1^{*a*}

entry	RCHO	product	$yield^b$	ds	$\% ee^{c}$
1	Ph(CH ₂) ₂ CHO	3a	89%	1:7	87
2	$BnOCH_2CHO$	3b	52%	1:7	90
3	BnO(CH ₂) ₂ CHO	3c	84%	1:10	92
4	PhCHO	3d	80%	1:10	88
5	CyCHO	3e	87%	1:6	90
6	PhCH=CHCHO	3f	86%	1:15	87

^{*a*} Reactions were performed by treating (±)-1 (0.44 mmol, 2.1 equiv) with (^{*d*}Ipc)₂BH (1.0 equiv) in toluene at -25 °C for 5 h and heating at 95 °C for 1.5 h, followed by the addition of RCHO (0.8 equiv) at -78 °C. The mixture was then allowed to stir at -78 °C for 4 h. The reactions were subjected to a standard workup (NaOH, H₂O₂) at 0 °C prior to product isolation. ^{*b*} Combined yield of **2** and **3**. ^{*c*} Determined by Mosher ester analysis.⁸

Scheme 3. Proposed Thermodynamically Controlled Isomerization and Allylboration of (*S*)-*E*-**7** with Aldehydes

isomerizes at 95 °C to the thermodynamically more stable allylborane (*S*)-*E*-7 via the intermediacy of the 1,1-diboryl species **6**. Allylboration of aldehydes with (*S*)-*E*-7 at -78 °C proceeds via the chairlike transition state **TS-3** to give the boronate **8**. Subsequent oxidation of **8** gives 1,2*anti*-diols **3**. Based on these considerations, it is readily apparent that the absolute configuration of the secondary alcohol of **3** is controlled by the α -boryl stereocenter of (*S*)-*E*-7, since the *re*-face addition to the aldehyde in **TS-3** is opposite to that expected based on the known enantioselectivity of the (^dIpc)₂B- unit.¹² By comparison, the relative disposition of the aldehyde and the crotyl unit of

^{(10) (}a) Hancock, K. G.; Kramer, J. D. J. Am. Chem. Soc. 1973, 95, 6463. (b) Kramer, G. W.; Brown, H. C. J. Organomet. Chem. 1977, 132, 9. (c) Henriksen, U.; Snyder, J. P.; Halgren, T. A. J. Org. Chem. 1981, 46, 3767. (d) Fang, G. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2007, 46, 397. (f) Gonzalez, A. Z.; Soderquist, J. A. Angew. Chem., Int. Ed. 2007, 46, 397. (f) Gonzalez, A. Z.; Roman, J. G.; Alicea, E.; Canales, E.; Soderquist, J. A. J. Am. Chem. Soc. 2009, 131, 1269.

⁽¹¹⁾ For recent studies from our group, see ref 6 and: (a) Chen, M.;
Handa, M.; Roush, W. R. J. Am. Chem. Soc. 2009, 131, 14602. (b) Ess,
D. H.; Kister, J.; Chen, M.; Roush, W. R. Org. Lett. 2009, 11, 5538. (c)
Chen, M.; Ess, D. H.; Roush, W. R. J. Am. Chem. Soc. 2010, 132, 7881.
(d) Stewart, P.; Chen, M.; Roush, W. R.; Ess, D. Org. Lett. 2011, 13, 1478. (e) Chen, M.; Roush, W. R. Org. Lett. 2011, 13, 1992.

^{(12) (}a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. **1983**, 105, 2092. (b) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. **1986**, 108, 293.

(*S*)-*E*-7 in the competing transition state **TS-4** is consistent with asymmetric induction derived from the $({}^{d}Ipc)_{2}B$ -unit;¹² however, significant A^{1,3} interactions¹³ develop between the two methyl groups of the crotyl unit (shown in red in **TS-4**). We conclude that the unfavorable A^{1,3} interaction in **TS-4** is sufficiently large to override the enantioselectivity of the (${}^{d}Ipc)_{2}B$ - auxiliary.

The mismatched hydroboration reaction of allenylboronate (M)-1 with $({}^{I}\text{Ipc})_2\text{BH}$ (Scheme 1b) must generate two diastereomeric allylboranes (R)-Z-9 and (S)-E-10, in order to explain the formation of a mixture of alcohols 2 and 3 in 12% yield (Scheme 4). The low efficiency is presumably due to the fact that the hydroboration path-

ways involved in these reactions are either mismatched with the known enantioselectivity of $({}^{I}Ipc)_{2}BH$ (as inferred from the hydroboration of (Z)-olefins)¹⁴ or mismatched with respect to the preference of allene hydroboration to occur *anti* to bulky substituents at the distal position.^{10f,11} These stereochemical mismatches provide the basis to rationalize that the rate of mismatched hydroboration of (*M*)-1 with (${}^{I}Ipc)_{2}BH$ at -25 °C is slow. This then enables kinetic resolution to occur in the enantioselective hydroboration of the racemic allenylboronate (±)-1 using (${}^{d}Ipc)_{2}BH$ at this temperature.

To obtain further evidence that a kinetic resolution process is indeed involved in this reaction sequence, additional studies to determine the enantiomeric excess of the remaining allenylboronate (*P*)-1 were carried out as summarized in Scheme 5. Under kinetic hydroboration conditions using 1.8 equiv of racemic 1 under conditions described in Table 1, the enantiomeric excess of the remaining allenylboronate (*P*)-1 was determined to be 79% ee (Scheme 5a). When the hydroboration was performed with 2.0 equiv of racemic 1 under the thermodynamically controlled isomerization conditions as described in Table 2 using 2.0 equiv of racemic 1, the enantiomeric excess of the remaining allenylboronate (*P*)-1 was 55% ee

^{*a*} The enantiomeric purity and absolute configuration (*P*)-1 was determined following its reaction with hydrocinnamaldehyde, as described in the SI.

(Scheme 5b). The enantiomeric purity of the remaining allene (*P*)-1 in these experiments was determined by the reaction of this species with hydrocinnamldehyde, as described in the SI. The results presented in Scheme 5, together with the data presented in Tables 1 and 2, support our conclusion that an efficient kinetic resolution indeed occurs when racemic allenylboronate 1 is treated with 0.45-0.55 equiv of (^dIpc)₂BH.

In summary, we demonstrate that efficient kinetic resolution of racemic allenylboronate (\pm)-1 with 0.48 equiv of $({}^{d}Ipc)_{2}BH$ at -25 °C provides the allylborane (R)-Z-4. Subsequent allylboration of aldehydes with (R)-Z-4 at -78 °C followed by oxidation gives 1,2-*syn*-diols 2 in 63-82% yield with $\ge 10:1$ diastereoselectivity and 90-94% ee. Allylborane (R)-Z-4 isomerizes to the thermodynamically more stable allylborane (S)-E-7 when heated to 95 °C. Allylboration of aldehydes with (S)-E-7 provides 1,2-*anti*-diols 3 in 52-89% yield with synthetically useful diastereoselectivity (ds $\ge 6:1$) and 87-92% ee. Synthetic applications of this methodology will be reported in due course.

Acknowledgment. Financial support provided by the National Institutes of Health (GM038436) is gratefully acknowledged. We thank Eli Lilly for a predoctoral fellow-ship to M.C. and the National Science Council, Taiwan for providing a postdoctoral fellowship to J.L.H. (NSC98-2917-I-564-141).

Supporting Information Available. Experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹³⁾ Hoffman, R. W. Chem. Rev. 1989, 89, 1841.

^{(14) (}a) Brown, H. C.; Zweifel, G. J. Am. Chem. Soc. 1961, 83, 486.
(b) Zweifel, G.; Brown, H. C. J. Am. Chem. Soc. 1964, 86, 397.

The authors declare no competing financial interest.